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DELIVERABLE SHORT SUMMARY FOR USE IN 

MEDIA  

Data Envelopment Analysis-based diet model serves as an elegant tool for 

optimizing diets in an innovative way. Its generic structure allows for a variety of 

extensions to be made on top of the core model. Its common primary objective 

is diet health optimization, while auxiliary objectives can be diverse, for instance 

diet sustainability and preferability. If the appropriate diet sustainability metric is 

available, its inclusion in the model is relatively straightforward, whereas diet 

preferability presents a much more significant challenge. Instead of inferring 

consumer preferences by computing consumer similarities, as is the case with 

some data envelopment analysis-based diet models, our approach is based on 

food item similarities, which allows for much more intuitive and diverse food 

item recommendations, including those for food items that have not been 

observed in consumers’ diets. 

 

TEASER FOR SOCIAL MEDIA 

Diet modelling has been dominated by linear programming models for many 

years, however their success has been limited, while their inability to extract value 

from data in our information-driven world has become readily apparent. 

Increasing consumers’ diet healthiness has been the primary task of almost all 

diet models, however to actually change patterns of consumers’ purchasing 

behavior, models have to learn their preferences, so as to recommend diet 

alternatives that are both healthy, and appealing. We present our data-driven 

approach that leverages food item similarities as the main building blocks of diet 

recommendations, which arguably represents a paradigm shift in the way we 

optimize diets. Furthermore, we switch from exploiting what is known to be 

preferable (i.e. what we observe in a consumer’s diet), to exploring what is likely 

preferable, thereby allowing our diet model to “think outside the box”. 

Keywords: sustainability, preferability, information entropy, mutual information 
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Extended SHARP model

Ante Ivancic, Wageningen University

The SUSFANS deliverable D7.4 proposes an extension of the basic SHARP
model presented in the SUSFANS deliverable D7.3. The basic SHARP model
is based on the Data Envelopment Analysis (DEA), a commonly used nonpara-
metric benchmarking method within the operations research domain. The basic
model’s primary goal is to identify healthier diets within a particular age/gender
group, thereby addressing nutritional adequacy and, to some extent, population
diversity parameters. Besides computing diet healthiness, the basic model in-
cludes a consumer similarity metric, namely the absolute loss function, which
serves as a way of estimating consumer preferences. Such approach would ar-
guably result in diet recommendations that are to some extent both culturally
acceptable and economically feasible.

However, the absolute loss comes with a few caveats, namely the intrinsic
bias towards diet recommendations that are more-or-less the same as the orig-
inal diet, in terms of food items that they consist of. Stated differently, the
recommended diets will rarely include food items that have not been recorded
in a particular consumer’s purchase history. This poses as a potential drawback,
given that it is a well know fact that many food items serve as either substi-
tute for, or complements to one another, which the absolute loss does not take
into account. Furthermore, in case there is a need for recommending a certain
food item not present in a particular consumer’s diet, for whatever reasons, the
absolute loss can not estimate the probability of that food item being preferred
by the consumer.

Another drawback of the absolute loss-based recommendations lies in the
fact that, in case the model needs to provide reasons for its recommendations,
its internal workings are not necessarily intuitive to a human modeller. For
instance, a consumer A receives a diet recommendation based on the fact that
he/she is similar to consumers B, C, and D. It is arguably extremely hard for
the modeller to assess the validity of the results.

In the SUSFANS deliverable D7.4 we have tried to address the aforemen-
tioned drawbacks, by proposing an alternative approach for computing prefer-
ability, which is primarily based on food item similarities. The hypothesis was
that similar food items are bought by similar consumers, which would auto-
matically take into account various aspects of human preferences (determined
by consumers’ culture, socio-economic status, lifestyle, etc.), while at the same
time render our approach fairly transparent, and intuitive. For instance, instead
of selecting a consumer, and retrieving a list of similar consumers whose quality
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is hard to validate, our preferability module constructs a food item graph, and
for each food item, it is able to retrieve a list of the most similar food items.
Manually inspecting such results is arguably much easier, given that the mod-
eller only has to compare food items, and not consumers (i.e. potentially long
lists of food items).

Furthermore, our proposed approach allows for consumers’ diets to be en-
riched with food items that they have not reported in their diets surveys. For
instance, if the model predicts a high probability of a certain food item being
preferred by a certain consumer, and if that food item has a high sustainability
index, such recommendation could lead to a significant increase in diet’s sus-
tainability, which might not be achievable had the algorithm been constrained
only to the reported set of food items.

The approach is presented in the remainder of this deliverable. The forth-
coming deliverable D7.5 will report on the inclusion of sustainability metrics
within the DEA approach and on the application of the model on nutrition
surveillance data for the four focus countries in SUSFANS (Czech Republic,
Denmark, France and Italy) – effectively establishing the SHARP model as a
component of the SUSFANS modelling toolbox.
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Abstract

Data Envelopment Analysis-based diet model serves as an elegant model for optimizing
diets in an innovative way. Its generic structure allows for a variety of extensions to be
made on top of the core model. Diet healthiness is currently the dominant objective of data
envelopment analysis-based diet models, while the rest, such as diet preferability and diet
sustainability, are either rudimentary, or non-existent. Diet sustainability, in the form of a
metric, can be easily included in the current models, while diet preferability arguably needs
to be developed as a separate, more elaborate module, that could support the core data
envelopment analysis-based diet model with its outputs. Instead of computing consumer
preferences solely through the absolute loss metric (as presented in the SUSFANS deliverable
7.3), which tends to be restricted to the set of food items previously purchased by a consumer,
we propose an alternative approach that is based on food item similarities, which would allow
for much more diverse food item recommendations, i.e. the recommendations will including
the food items that have not been recorded in a consumer’s diet. Furthermore, incorporating
food item similarities into the absolute loss (or any other metric) would arguably result in
more realistic consumer similarity scores.

1 Introduction
The intention of this technical report is to summarize, and build on the idea presented in (Kanellopoulos
et al., 2018), where the authors developed a diet model based on Data Envelopment Analysis (DEA)
(Cooper et al., 2004). In (Kanellopoulos et al., 2018), the model takes in a sample of diets repre-
sented by their nutrient content, and for each of them, it searches for a diet (or a linear combination
of diets) that is present in the data set, and at least as healthy as the original one - a procedure that
has been termed ”benchmarking”. Diet healthiness refers to the degree of adherence to nutrient
intake recommendations (EFSA, 2017), which is computed through the loss function imposed by
the model.

Furthermore, in (Kanellopoulos et al., 2018) the authors proposed three different versions of the
DEA model, of which one contained an additional search criterion, namely the diet ”preferability”
- the likelihood of an alternative diet being preferred by a consumer. That is, when the model
identifies a region in the search space that contains exclusively healthier diets, it switches its priority
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from identifying the healthiest alternative, to identifying the most similar one, where the notion
of diet similarity is equated with diet preferability. Just like the healthiness loss function, the
similarity loss function is predefined by the modeler, and is, to a certain degree, subjective (Hastie
et al., 2009). Moreover, the performance of the loss function is heavily dependent on the choice of
data representation (Bengio et al., 2013). In this case, no transformation has been applied to the
raw data, apart from standardizing diets to 2000 kcal per day.

Our aim is to increase the proposed DEA model’s capacity, in the sense of including an ad-
ditional criterion that would be taken into account while benchmarking diets, namely the food
sustainability metric, which importance has been increasing at an accelerating rate (Macdiarmid
et al., 2012). Furthermore, we argue that a separate ”preferability module”, in the form of a recom-
mendation system with a preprocessing/data transformation layer that results in a representation
of the data that can support effective similarity computations (either between consumers, or food
items), would serve as a valuable extension to the core DEA model. The details of such a module
will be discussed in the section 4 of this report.

In the following section, we will give a brief summary of the DEA diet model developed in
(Kanellopoulos et al., 2018), and will identify some of its potential drawbacks, which will serve
as the motivational starting points for the extensions that will be presented in the subsequent
sections.

2 DEA diet model - a brief summary
Data Envelopment Analysis (DEA) is a commonly used nonparametric benchmarking method
within the operations research domain (Cooper et al., 2004). It has been applied in a variety of
different fields, such as banking, healthcare, agricultural economics, transportation, and education.
In general, the aim of DEA is to identify Decision Making Units (DMUs) that convert inputs (i.e.
less-is-better criteria) into outputs (i.e. more-is-better criteria) in the most efficient way. Thanks
to its rather generic nature, the concept of efficiently identifying DMUs turned out to be perfectly
applicable within the domain of diet modelling, where DMUs become individual diets that can be
evaluated based on the intake of multiple less-is-better (unhealthy), and more-is-better (healthy)
nutrients (Kanellopoulos et al., 2018).

DEA aims to compare each diet with all other diets in a sample, and identify those that are
efficient i.e. those that for certain levels of less-is-better nutrients contain the highest levels of
more-is-better nutrients (i.e. output-oriented DEA model; OO-DEA), or those that for certain
levels of more-is-better nutrients contain the lowest levels of less-is-better nutrients (i.e. input-
oriented DEA model; IO-DEA) (Kanellopoulos et al., 2018). By doing so, it effectively builds
an ”efficiency frontier” (a convex hull) around inefficient diets, populated by the efficient diets.
The efficient diet are considered to be the healthiest diets in the sample. The efficiency score
(ES; ES ∈ [0, 1]) expresses how far away a certain inefficient diet is from the frontier. Every
inefficient diet has ES < 1, while every efficient diets has ES = 1. These scores are obtained
through linear programming (LP), the principal workhorse behind DEA method (Cooper et al.,
2004; Kanellopoulos et al., 2018).

Given that diets consist of nutrient intake values that can be represented as real numbers,
DEA operates in the vector space over the field of real numbers (i.e. a real vector space), which by
definition supports two operations, namely addition and scalar multiplication, which further implies
that every single inefficient diet can be projected onto the frontier. The projection can be done
in many ways, depending on the choice of the distance function. Furthermore, it should be noted
that every single vector that dominates a particular inefficient diet, presents a healthier alternative,
which might actually be more preferable than the healthiest alternative. This is precisely what the
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authors in (Kanellopoulos et al., 2018) explored - instead of constraining the set of solutions to the
subset of Pareto-efficient diets that dominate a certain inefficient diet, they relaxed this constraint
to include all diets that dominate it, and then searched for a diet within that subset that minimizes
the absolute deviation between their food item intake values (the absolute loss function).

However, modeling preferability solely through minimization of the absolute loss leaves a lot
to be desired. For instance, raw data might not serve as the most suitable representation, thereby
making the extraction of useful information harder than necessary, or even impossible (Bengio et
al., 2013). Furthermore, the absolute loss will always increase as much as possible in case both
diets do not contain the same food item, while completely disregarding the fact that i. a particular
food item (Fa) might serve as a substitute for another food item that is present in the diet that
does not contain Fa, i.e. disregards food item similarities, or ii. that the consumer whose diet does
not contain this food item, might actually prefer it (with a certain probability), which could be
inferred from other food items that his diet does contain. In the section 4 we propose one possible
alternative methodology that would arguably successfully address the drawbacks of the current
method.

Furthermore, it seems reasonable to impose diet healthiness as the primary goal of diet opti-
mization, as in the case above, however after making sure that our algorithm cannot produce a
solution that is less healthy than the current one, we can impose additional search criteria, thereby
sacrificing improvements in diet healthiness to a certain degree, for the purpose of maximizing
some other criteria. Naturally, the criteria can be weighted in a way that would reflect the mod-
eler’s belief about their importance. Besides the preferability metric, some form of a sustainability
metric would be arguably beneficial. The reasons for that, and how to include it in the DEA model
will be explained in the following section.

3 Sustainability metric
Because of the exponential population growth, it is estimated that the global food production needs
to increase at a rate of 1.2% per year to realize adequate diets for all people (Tilman et al., 2011).
It is hard to imagine how much of an impact would that increase have on our ecosystem, given that
current diets and production practices are already degrading terrestrial and aquatic ecosystems,
depleting water resources, and driving climate change. More specifically, current food production
and consumption patterns in Europe are held responsible for more than 25% of greenhouse gas
emissions (GHGE), and more than 80% of arable land globally (Godfray et al., 2010). Shifting
towards more sustainable diets is one of the strategies that could potentially remedy this issue.
However, to be able to assess diet sustainability, there has to be some form of a sustainability
metric assigned to every food item. Indeed, that poses a significant challenge. Nevertheless, many
have tried, albeit with limited success. Delving deeper into this topic is well beyond the scope of
this report, therefore the reader is referred to (Mertens et al., 2017).

Within the context of the SUSFANS project, greenhouse gas emissions (GHGE) and land use
have been selected as relevant sustainability metrics for which reasonable amount of reliable data
is available. Values for these metrics have been assigned to individual food items consumed in
Europe as they occur in the FOODEX2 classification system by the European Food and Safety
Authority (EFSA) (Mertens et al., 2018)

From the modelling standpoint, the sustainability indicator will change DEA’s computational
procedure in the same way as the aforementioned preferability criterion. More precisely, DEA will
again shift its priority from finding the healthiest alternative, to finding the most sustainable one,
that is at least as healthy as the original diet. Naturally, there can not be multiple criteria, all
with maximal importance, so in case of having more than one additional criterion, a modeller will
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have to impose a weighting scheme over the criteria. This weighting scheme should reflect the
modeller’s belief about their relative importance. To give a very simple illustrative example, in
case of having two search criteria (e.g. preferability (P ) and sustainability (S)) the modeller can
induce a (fairly trivial) probability distribution over them, such as the one below:

β · P + (1− β) · S

where β represents the probability mass, i.e. the importance weight.

4 Diet preferability
As mentioned before, DEA diet model developed in (Kanellopoulos et al., 2018) incorporates the
preferability dimension in two way: by assigning consumers into groups (according to their age/sex)
that are being optimized independently, and by applying the absolute loss similarity metric during
the benchmarking procedure. As stated in the section 2, this section will propose the computational
procedure for inferring consumer preferences, which is mainly addressing the potential issues of
the absolute loss metric, and how to incorporate its results into the core DEA diet model.

There are at least two questions that one can pose while trying to define food item preferability,
such as i. why consumers like the food items they buy?, and ii. which food items might consumers
like? The first questions is complex, and giving a reasonably precise answer is highly unlikely.
However, if observed on a macro level, human decision-making process could possibly be viewed
as a Hidden Markov model (Baum & Petrie, 1966), i.e. a decision-making model that cannot be
analyzed directly, but only through decisions that it makes. Furthermore, if those decisions are
recorded over time, they could serve as a basis for predicting the answer to the second question.
Moreover, if one augments that data with data from other sources similar (or complementary) to
the original one, the prediction power should further increase. This idea has been used for many
years, especially in the context of recommender systems, whose task is to turn data on users and
their preferences into predictions of users’ possible future likes and interests (Lü et al., 2012). Such
models have been very successfull, as witnessed by social and technological impact of companies
that leverage them, namely Google (Covington et al., 2016), Facebook (Ching et al., 2015), and
Amazon (Linden et al., 2003).

More precisely, the problem of inferring consumer preferences can be cast as a collaborative
filtering problem. Collaborative filtering (CF) is a class of methods for predicting a user’s preference
or rating of an item, based on his/her previous preferences or ratings and decisions made by similar
users (Aggarwal, 2016; Sarwar et al., 2001).

There exist many types of collaborative filtering/recommender systems, which could be roughly
categorized into 5 groups: neighborhood-based and model-based collaborative filtering, and content-
based, knowledge-based, and ensemble-based/hybrid recommender systems (Aggarwal, 2016). That
being said, the set of feasible methods will strongly depend on the amount and type of data, and
the available computing power.

Given the data set used in (Kanellopoulos et al., 2018), which could be considered extremely
small and sparse by today’s standards, we decided to apply a neighborhood-based collaborative
filtering approach, which builds on the premise that similar users (consumers) display similar pat-
terns of behavior (e.g. purchase behavior) (Aggarwal, 2016). Our proposed algorithm consists of
two computational layers: a data preprocessing layer (”PrepLayer”), and a similarity computation
layer (”SimLayer”). The PrepLayer provides us with the ability to extract and organize the dis-
criminative information from the data, i.e. to identify and disentangle the underlying explanatory
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factors hidden in the observed (raw) data (Bengio et al., 2013). The SimLayer computes similarities
between all pairs of food items, effectively building a ”food item graph”, which can be leveraged
in many different ways.

Before presenting the details of our proposed algorithm, we will first explain the data set that
the modelling had been performed on.

5 Data & Methods
5.1 Data
The data set that we used is the so-called ”Nutrition Questionnaires plus” data set (NQplus)
(Feskens, 2016), which includes the assessment of habitual dietary intake of 1784 participants
(gathered through food frequency questionnaires and repeated 24-hour recalls), among other things.
Essentially, the data set could be represented as a n×p×d tensor T where n = 1784 is the number
of participants/consumers, p = 1297 is the number of distinct food items, while d = 3 is the number
of randomly sampled days, which were not necessarily the same for every consumer. Furthermore,
every element of T is the amount (in grams) of a food item pi, consumed by a consumer ni on a
day di.

For our modelling purposes, we decided to transform the original tensor T into the n×p matrix
M , by averaging the n × p entries across d days. Stated differently, every entry of the matrix M

can be thought of as the expected value of a consumer ni’s intake of a food item pi.

5.2 Data preprocessing layer (PrepLayer)
As stated before, a suitable data representation (i.e. features) can greatly facilitate the extraction
of useful information. The representation can be either handcrafted, or learned from data. Unfor-
tunately, our data set (Feskens, 2016) does not allow for automatic representation learning, mainly
because of its insufficient size. Therefore, we had to resort to handcrafting the representation.

One can think of this procedure as a way of increasing the signal-to-noise ratio. The goal was
to obtain a weight matrix that would transform the raw data in such a way that every entry of M
becomes a better approximation of the interrelations between food items and consumers.

Our approach has been inspired by the methods used in the scientific fields of natural-language
processing and text mining, namely the ones for modelling semantic similarity between documents,
which poses a significant theoretical challenge (Pincombe, 2004). If we think of consumers as docu-
ments, and food item quantities (or some transformation thereof) as word occurrence probabilities,
these two seemingly completely different research fields become much more similar.

A variety of different approaches have been developed for modeling text document similarity
(Pincombe, 2004), while most of them are essentially combinations of local and global weighting
functions. In the context of diet modelling, a local weight should reflects the specificity of a certain
food item within a certain consumer’s diet, while a global weight should reflect the specificity of
a certain food item across all consumers’ diets. Furthermore, it has been noted that altering the
local weighting function makes relatively little difference, but that changing the global weighting
function does make a significant difference (Pincombe, 2004). However, it should be noted that the
success of such functions can only be assessed in terms of their ability to emulate human judgments
of importance. Therefore, objectively assessing the quality of the results poses a challenge.

We adopted the basic concept of having a combination of local and global weighting functions,
however instead of selecting one of the commonly utilized global weighting functions that either
do not have provably desirable properties, or might not be easily tweaked so as to accommodate
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different data type, we decided to propose a new weighting function, which is (very) loosely based
on the concept from theoretical artificial intelligence, namely the algorithmic/Solomonoff/universal
probability distribution (Solomonoff, 1964), which is used for assessing the universal intelligence
of an agent, and does have provably desirable properties (Legg, 2008). A thorough treatment of
the entire subject is well beyond the scope of this technical report, therefore the interested reader
is referred to (Solomonoff, 1964; Legg, 2008; Hutter, 2005).

In a nutshell, an agent’s success within an environment, e.g. a human player’s success in a
video game, is weighted by the complexity of that environment. Stated differently, the success
in a more/less complex environment carries more/less weight. This weighting scheme is gener-
ally considered to be a formalization of the philosophical principle called the ”Occam’s razor”
(Rasmussen & Ghahramani, 2001), and could be formally expressed in the following way (for a
single environment):

V π
µ · 2−K(µ)

where V π
µ represent the success of the agent π in the environment µ, while K(µ) stands for

the Kolmogorov complexity of the environment µ. The expression 2−K(µ) represents the Occam’s
razor. As with the universal distribution, the concept of the Kolmogorov complexity is also beyond
the scope of this report, therefore the reader is referrred to (Legg, 2008).

In the context of diet modelling, we can think of V π
µ as the intake of the food item µ by the

consumer π, e.g. how much probability mass is concentrated on this food item (i.e. local weight),
while 2−K(µ) could represent the ”complexity” of the food item µ, i.e. how much information on
average does it carry, with respect to all other consumers. We will demonstrate our weighting
function on a toy 4× 5 matrix, however the concept generalizes to any other matrix, including our
consumer-food matrix M .

We start with the raw matrix Mtoy, such as the one below
150 60 34 0 0

120 20 12 12 10

114 0 87 0 1

117 0 0 0 0


where every row i represents a single consumer, every columns j represents a single food item,

and every element Mij expresses the amount of food item j (in grams) consumed by the consumer
i. Given that different foods tend to have different scales (e.g. the average intake of oregano is
much lower than the average intake of bread), it is advisable to normalize the columns. We apply
the so-called ”max abs scaling”, i.e. divide every column by its maximum absolute value, so as to
set the column range to [0, 1] (given that we do not have negative values). The resulting matrix
MMaxAbs looks like this: 

1 1 0.3908 0 0

0.8 0.3333 0.1379 1 1

0.76 0 1 0 0.1

0.78 0 0 0 0


Next, we compute two matrices, by transforming the rows/columns of MMaxAbs into probabil-

ities, i.e. dividing each row/column by its sum
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0.4183 0.4183 0.1635 0 0

0.2446 0.1019 0.0422 0.3057 0.3057

0.4086 0 0.5376 0 0.0538

1 0 0 0 0



0.2994 0.75 0.2556 0 0

0.2395 0.25 0.0902 1 0.9091

0.2275 0 0.6541 0 0.0909

0.2335 0 0 0 0



ending up with MProws (left) and MPcols (right). MProws will serve as the local weight. Next,
we start computing the global weight matrix, which we will refer to as the Occam’s razor matrix,
MRazor. First, we compute the average information content of every column in the matrix MPcols.
Shannon’s information theory provides a suitable formalism for quantifying the average information
content. The Shannon information content (h) is formally defined as

h(X = xi) ≡ log2
1

pi

where X = xi is an event, while pi is its probability. The information entropy (H) is a natural
extension of the Shannon’s information content (given the favourable properties of the logarithm
function), which represents the average information content of a set of outcomes. Mathematically,

H(X) =
∑
i

pilog2
1

pi

where X = xi is an event, while pi is its probability (Shannon & Weaver, 1963). In our case,
the events are the food items, while the elements of MPcols represent their probabilities across the
consumers. After computing the entropies of all columns, we end up with a single row, which we
duplicate n times, where n is the number of rows of our original matrix Mtoy. We get the matrix
below: 

1.9908 0.8113 1.2167 0 0.4395

1.9908 0.8113 1.2167 0 0.4395

1.9908 0.8113 1.2167 0 0.4395

1.9908 0.8113 1.2167 0 0.4395


This will represent the K in 2−K(µ), i.e. the ”environment complexity”. It should be noted

that we are slightly abusing the notion of complexity, in the sense that we treat the most uniform
distribution as the least complex (as if it was just a string of numbers), while in reality it is
actually the most complex. However, the way in which it is computed serves our purpose. That
is, if the intake of a certain food items is more-or-less equally distributed among the consumers,
the entropy will be high, which will in turn significantly decrease the value of 2−K(µ). Conversely,
if the distribution is highly non-uniform, the entropy will be low, thereby increasing the value of
2−K(µ). If the entropy is equal to zero (i.e. if the food item has been consumed by only a single
consumer), 2−K(µ) will be equal to 1, therefore there will be no penalty. We argue that this global
weighting function correlates with what humans would perceive as important.

2−1.9908 2−0.8113 2−1.2167 20 2−0.4395

2−1.9908 2−0.8113 2−1.2167 20 2−0.4395

2−1.9908 2−0.8113 2−1.2167 20 2−0.4395

2−1.9908 2−0.8113 2−1.2167 20 2−0.4395

 ;
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0.2516 0.5698 0.43026 1 0.7373

0.2516 0.5698 0.43026 1 0.7373

0.2516 0.5698 0.43026 1 0.7373

0.2516 0.5698 0.43026 1 0.7373


Now that we’ve obtained our MRazor matrix, the only thing that’s left is to multiply it with

MProws to obtain the weighted representation of our data (MW ), whose rows can further be
converted into probabilities, so as to facilitate the comparison between the weighted representation,
and the original probabilities MProws. MProws (top left), MPcols (top right) and MWprobs (bottom)
are presented below:


0.4183 0.4183 0.1635 0 0

0.2446 0.1019 0.0422 0.3057 0.3057

0.4086 0 0.5376 0 0.0538

1 0 0 0 0



0.2994 0.75 0.2556 0 0

0.2395 0.25 0.0902 1 0.9091

0.2275 0 0.6541 0 0.0909

0.2335 0 0 0 0



0.2542 0.5758 0.1699 0 0

0.0919 0.0868 0.0271 0.4570 0.33701

0.2750 0 0.6188 0 0.106

1 0 0 0 0


For instance, if we observe the elements MProws(1, 1) and MProws(1, 2), it seems that the

consumer 1 equally prefers the food items 1 and 2, however according to those food items’ columns
MPcols(1, :) and MPcols(2, :), the preference of the food item 1 should not be that significant, while
the preference of the food item 2 might actually be very significant. This is reflected in the MWprobs

matrix, in which the value of food item 1 dropped from 0.4183 to 0.2542, while the value of food
item 2 increased from 0.4183 to 0.5758. We can also note the interesting changes that took place
at the locations MProws(2, 4) and MProws(2, 5), etc.

5.3 Similarity computation layer (SimLayer)
In this subsection we are going to explain the second computational layer of our proposed algorithm,
namely the similarity computation layer. Its main function is to compute pairwise food item
similarities, which would ultimately result in a ”food item graph” - a fully connected graph that
can be queried in many ways. Our primary intention was to explain the way in which such a graph
could support the prediction of food item ratings by consumers that have not reported consuming
those food items, which would allow for much more diverse recommendations, and potentially more
accurate preferability estimation.

Because of our strong belief that the data set is fairly inaccurate due to the extremely low
sampling frequency (i.e. 3 days/year), we have decided to binarize our data set by applying the
thresholding procedure, which replaces each value in our weighted representation matrix MW probs

with 0 if the value is less than some fixed constant T , or 1 if the value is greater than that constant.
By doing so, we essentially stated that although the values of our data could tell us something, it
might be a good thing to develop a layer that is fairly robust, and not fully dependent on these
observed, and likely noisy values. For the purpose of this report, the binarization was performed
over the weighted representation matrix MWprobs, while the threshold was set to 0. Given our
Mtoy matrix, the resulting matrix would look like the one below:
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0.2542 0.5758 0.1699 0 0

0.0919 0.0868 0.0271 0.4570 0.33701

0.2750 0 0.6188 0 0.106

1 0 0 0 0

 ;


1 1 1 0 0

1 1 1 1 1

1 0 1 0 1

1 0 0 0 0


Naturally, the parameter T can be tuned. Furthermore, it is possible to introduce a parameter

Ntop, that would transform only the top N values of each row of the weighted representation matrix
MWprobs into 1’s , while the rest would be 0’s.

The similarity metric that we selected is based on the information-theoretic concept of mutual
information (MI or I(X;Y )). The motivation for considering mutual information is its capability
to measure a general dependence among random variables (i.e. food items)(Zhou et al., 2004), as
opposed to some other commonly employed correlation metrics (e.g. Pearson correlation coeff.),
which measure only linear dependence.

Intuitively, the mutual information I(X;Y ) between two random variables X and Y is the
amount of information Y (X) gives about X (Y ), i.e. how much knowing one of these variables
reduces uncertainty about the other. Mathematically, we define this as the difference between the
entropy of X and the entropy of X conditioned on Y .

I(X;Y ) = H(X)−H(X|Y )

The mutual information is symmetric, i.e. I(X;Y ) = I(Y ;X), as shown below:

H(X) +H(Y |X) = H(X,Y ) = H(Y,X) = H(Y ) +H(X|Y )

H(X)−H(X|Y ) = H(Y )−H(Y |X)

I(X;Y ) = I(Y ;X)

Do note that in this case, the notion of entropy is used properly. Furthermore, I(X;Y ) can be
expressed via the Kullback-Leibler divergence, a fundamental equation of information theory that
quantifies the proximity of two probability distributions. Essentially it quantifies in bits how close
a probability distribution P is to a model (or candidate) distribution Q. Mathematically,

DKL(P∥Q) =
∑
i

P (i) log2
P (i)

Q(i)

In the case of mutual information, P represents the joint probability distribution p(x, y), while
Q represents the product of their marginal distributions, p(x)p(y):

I(X;Y ) = DKL(p(x, y)∥p(x)p(y))

which arguably justifies its selection as a dependence metric.
Furthermore, it should be noted that the value of I(X;Y ) can be very small, even if X and Y

are highly correlated, since their entropies can be small, therefore we normalize it by the maximum
value between H(X) and H(Y ):
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Ī(X;Y ) =
I(X;Y )

max[H(X),H(Y )]

The SimLayer’s computational procedure is fairly straightforward, in the sense that the algo-
rithm takes in a single food item vector as input, and computes its similarity with all other food
item vectors. This procedure is performed p(p − 1)/2 times, where p is the number of distinct
food items. Essentially, all that it needs to do, is to compute the values of triangular entries of an
p × p matrix, namely because the similarity metric is symmetric, and the values of the diagonal
will always be equal to 1. i.e. a variable X shares 100% of its information content with itself.

For instance, the similarity computation between the food item (column) vectors of our bina-
rized MWprobs matrix, and the resulting food item similarity graph are shown below:

1

5

4 3

2

1

5

4 3

2

1

25

4 3

1

2

3

5

4

As with the PrepLayer’s output, the assessment of the SimLayer’s output quality is chal-
lenging, mainly because the choice of the similarity metric is to some extent subjective, and its
performance can be evaluated either through direct manual inspection, or indirectly, i.e. if its
utilization increases the value of some other variable that we want to maximize, e.g. when better
recommendations result in higher revenue etc. Indeed, our goal is to maximize diet preferability,
however given that our model does not have a feedback loop (i.e. there is no feedback from the
consumers that receive our model’s recommendations), we had to resort to manual verification of
the results.

We selected a few food items from our data set, for which we believed it would be easy to verify
the quality of the results. The results are ranked according to their similarity with the target food
item, in descending order. The reader has to keep in mind that these food item similarities are not
based on food features (e.g. nutrient content, taste, texture, etc.), but on consumers that bought
them:

• Soy drink - natural

– Soy drink (original), linseed, soy drink (various flavors), eggplant (cooked), vegetable
yoghurt (fruits/vanilla), apricots (dried), vegetarian hamburger
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• Coconut bread

– Wheat bran, hazelnuts (unsalted), muesli (fruits), meat with salad (lunch), raisins
(dried), cracked wheat bran

• Coffee milk (half-and-half)

– Coffee milk (whole), coffee milk (vegetable, half-and-half), champignons, sugar, vla
vanilla (whole), breakfast product (Brinta), coffee creamer, milk (half-and-half)

• Dried oregano

– paprika (powdered), tomato ketchup, tomatoes (mashed), red paprika (cooked), pepper
(black/white), stock cube, onions (cooked)

Furthermore, it is also interesting to observe the differences between e.g. food items consumed by
the majority of the consumers within the sample, and the ones that are not. For instance, white
bread has been recorded in approx. 22.3% of the consumers’ diets, whereas whole grain bread with
nuts has been recorded only in approx. 0.78% of the consumers’ diets. Some of their most similar
food items are the following:

• White bread

– Margarine 80% fat, ham (shoulder), whole grain bread, white bread (milk), Gouda
cheese, vegetables (raw), tiger bread, Brie cheese, broccoli (cooked), chicken eggs

• Whole grain bread with nuts

– Currant bread (wholegrain, morels, wholegrain bread, lychee, cereal bar, fennel (raw),
oat cake, vegetarian mince (unprepared), cress sprouts (raw)

The food item graph produced by the SimLayer can be queried in many ways. For instance,
it is possible to search for a food item that is the most similar to a set of food items, or to find
maximal weighted cliques (i.e. sets in which all food items are strongly correlated with each other),
or to cluster food items by minimizing mutual information between clusters, etc.

The final computational step that our algorithm performs is rating prediction. That is, it
predict the probability that a certain consumer will prefer a particular food item that has not been
observed in his data. Formally, the prediction is computed in the following way:

rci =

∑
j∈N sijrcj∑
j∈N sij

where rci is the rating of the food item i by the consumer c, sij is the similarity of the food
items i and j, rcj is the rating of the food item j by the consumer x (i.e. the values of our MWprobs

matrix), while N is the subset of food items that have been consumed (rated) by the consumer x.
The subset can contain all food items consumed by a particular consumer (i.e. a full set), or the
top n food items that are the most similar to the food item i.
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